Steins 傅里叶分析 第三章部分习题解答
Exercise 6
假设存在 \(f\) 的傅里叶系数是 \(\{a\}\),则 \(|f|\leq M\)
\[A_r(f)(0)=\bigg|\frac{1}{2\pi}\int_{-\pi}^{\pi}P_r(0-t)f(t)\mathrm dt\bigg|\leq M\frac{1}{2\pi}\int_{-\pi}^\pi P_r(t)\mathrm dt=M\]
另一方面,
\[\bigg|\sum_{n={-\infty}}^\infty a_nr^{|n|}e^{in\theta}\bigg|=\sum_{n=1}^{\infty} \frac{r^n}{n}\to \infty(r\to 1)\]
出现矛盾。
Exercise 10
\[ \begin{aligned} E^\prime(t)&=\rho\int_0^{L}\frac{\partial u}{\partial t}\frac{\partial^2 u}{\partial t^2}\mathrm dx+\tau\int_0^L \frac{\partial u}{\partial x}\frac{\partial^2 u}{\partial x\partial t}\mathrm dx \\ &=\rho\int_0^{L}\frac{\partial u}{\partial t}\frac{\partial^2 u}{\partial t^2}\mathrm dx+\tau \frac{\partial u}{\partial t}\frac{\partial u}{\partial x}\Big|_0^L-\tau \int_0^L \frac{\partial u}{\partial t}\frac{\partial^2 u}{\partial x^2}\mathrm dx \\ &=0 \end{aligned} \]
Exercise 12
注意到 \(\dfrac{1}{\sin \dfrac{x}{2}}-\dfrac{2}{x}\) 在 \(0\) 处是可去间断点,补充定义后可令其 \(\in \mathcal R[0,\pi]\),由 Riemann-Lebesgue Lemma
\[\int_0^{\pi}\Bigg(\frac{1}{\sin\dfrac{x}{2}}-\frac{2}{x}\bigg)\sin(N+\frac{1}{2})x\mathrm dx\to 0,N\to \infty\]
而
\[\int_0^\pi \frac{\sin(N+\dfrac{1}{2})x}{\sin \dfrac{x}{2}}\mathrm dx=\int_0^\pi D_N(x)\mathrm dx=\pi\]
得到
\[\int_0^\pi \frac{\sin(N+\dfrac{1}{2})x}{x}\mathrm dx\to \frac{\pi}{2},N\to\infty,N\in \mathbb Z\]
换元得到
\[\int_0^{(N+\frac{1}{2})\pi} \frac{\sin x}{x}\mathrm dx\to \frac{\pi}{2},N\to\infty,N\in \mathbb Z\]
两边取极限即得所求为 \(\dfrac{\pi}{2}\)
Exercise 14
\(\hat f^\prime(n)=\dfrac{1}{in}\hat f(n)\)
于是有
\[\sum_{n\neq 0} |\hat f(n)|\leq \sum_{n\neq 0}\dfrac{|\hat f^\prime(n)|}{|n|}\leq \sqrt{\sum_{n\neq 0}|\hat f^\prime(n)|^2}\cdot\sqrt{\sum_{n\neq 0}\frac{1}{n^2}}=C||f^\prime||< \infty\]
于是 \(\sum |\hat f(n)|\) 绝对收敛,即一致收敛。
Exercise 18
因为 \(\epsilon_n\to\infty\),所以 \(\forall k\in \mathbb Z^+,\exist \epsilon_{n_k}<\dfrac{1}{2^k}\),取 \(f=\sum \epsilon_{n_k}e^{in_kx}\) 即可。
这个练习归纳了之前关于傅里叶级数收敛速度的一些结论。
- \(f\in C^k\Rightarrow \hat f(n)=O(1/|n|^k)\)
- \(f\) is Lipschitz \(\Rightarrow \hat f(n)=O(1/|n|)\)
- \(f\) is monotonic \(\Rightarrow \hat f(n)=O(1/|n|)\)
- \(f\) satisfies Holder's condition with exponent \(0<\alpha<1 \Rightarrow \hat f(n)=O(1/|n|^{\alpha})\)
- \(f\) is Riemann Integrable \(\Rightarrow \hat f\in \ell^2,\hat f(n)=o(1)\)
Problem 1
\[\tilde D_N(x)=\frac{\cos\dfrac{x}{2}-\cos(N+\dfrac{1}{2})x}{\sin \dfrac{x}{2}}\]
用和差化积
\[|\tilde D_N(x)|=2\frac{|\sin(\dfrac{N}{2}+1)x\sin Nx|}{|\sin\dfrac{x}{2}|}\leq 2\pi\frac{|\sin Nx|}{|x|}\]
其中用了 \(|\sin(\dfrac{N}{2}+1)x| \leq 1\) 和 Jordan 不等式 \(|\sin \dfrac{x}{2}|\geq |\dfrac{x}{\pi}|\)
对 \(\dfrac{|\sin Nx|}{|x|}\) 在 \([0,\pi]\) 上积分,考虑对 \(\sin Nx\) 的符号分段讨论,\(x\) 放缩成区间左端点,就得到了类似调和级数的表达式,因此为 \(O(\log N)\)
假设 \(\sum_{n=1}^\infty\) 是某个 \(f\in\mathcal R\) 的傅里叶级数,则
\[(f*\tilde D_n)(0)=\frac{i}{\pi}\int_0^\pi f(t)\sum_{n=1}^\infty (e^{int}-e^{-int})\mathrm dt=2i\sum_{n=1}^\infty \frac{1}{n^\alpha}=\omega(\log N)\]
得到矛盾,因此不存在这样的 \(f\)。